TOTAL SYNTHESIS OF NEOMYCIN C

Sir:

Neomycin¹⁾, a useful antibiotic, was independently discovered by H. UMEZAWA *et al.*²⁾ in 1948 and S. A. WAKSMAN *et al.*¹⁾ in 1949. The neomycin complex consists of neomycins A, B, and C and neomycin C was isolated by DUT-CHER *et al.*³⁾ Elucidation of the complete structures of neomycins was achieved by RINEHART and his associates^{4,5)} in 1963. We wish here to report the total synthesis of neomycin C (1). This represents the first synthesis of an antibiotic of pseudo-tetrasaccharides.

Neomycin C (1) is composed of two molecules of neosamine C (2,6-diamino-2,6-dideoxy-Dglucopyranose)⁶⁾, 2-deoxystreptamine⁷⁾, and Dribose. Neamine (neomycin A), which is a pseudodisaccharide component of neomycins B and C, was synthesized by S. UMEZAWA *et al.*⁸⁾ and ribosylation of neamine was subsequently reported by ITO *et al.*⁹⁾ to afford ribostamycin which corresponds to a pseudo-trisaccharide portion common to both neomycins B and C. Hence, our approach to the synthesis of neomycin C involved pertinent protection of neosamine C and ribostamycin and regioselective α -glycosidation between them.

The α -glycosidation reaction used in the present study is based on our prior findings^{10,11}) that the modified KOENIGS-KNORR condensation of 3,4,6-tri-O-acetyl-2-deoxy-2-(*p*-methoxybenzyl-ideneamino)- α -D (or L)-glucopyranosyl bromide with suitably substituted sugars gave high yields (~85%) of α -glycosides. Our initial attempt to brominate 1,3,4-tri-O-acetyl-6-azido-2, 6-dideoxy-2-(*p*-methoxybenzylideneamino)- β -D-glucopyranose (**2**, mp 115~116°C, [α]_D²⁰ + 117.6°

(c 1.43, chloroform)) with hydrogen bromide in methylene chloride (2 minutes at -20° C) was not successful and resulted in the formation of 1, 3,4-tri-O-acetyl-6-bromo-2,6dideoxy-2-(*p*-methoxybenzylideneamino)- β -D-glucopyranose (3,mp151~152°C, $[\alpha]_{D}^{20}+96.8^{\circ}$ (*c* 0.67, chloroform)), the azido group at C-6 being replaced by bromine.¹²⁾ In a second approach to prepare the glycosyl halide, 1,3,4-tri-O- acetyl-2-deoxy-2-(*p*-methoxybenzylideneamino)-6-O-tosyl- β -D-glucopyranose¹⁸) was successfully converted, in 85% yield, by reaction of hydrogen bromide in methylene chloride (3 hours at 0°C), to syrupy 3,4-di-O-acetyl-2-deoxy-2-(*p*-methoxybenzylideneamino)-6-O-tosyl- α -Dglucopyranosyl bromide (4). Its structure was confirmed by ¹H-NMR data (in CDCl₃): δ 1.83, 1.95, and 2.43 (each 3H, s, OAc), 3.43 (1H, q, J_{1,2}=4.5 Hz and J_{2,3}=9 Hz, C₂-H), 3.85 (3H, s, OCH₃), 6.15 (1H, d, J_{1,2}=4.5 Hz, C₁-H), 6.90 and 7.68 (4H, AA'BB', J₀=9 Hz, C₆<u>H</u>₄OCH₃), 7.35 and 7.82 (4H, AA'BB', J₀= 9 Hz, SO₂C₆H₄CH₃).

On the other hand, ribostamycin was protected in the following manner. 1,3,2',6'-Tetra-Nbenzyloxycarbonylribostamycin¹⁴⁾ was transformed to the 2'',3''-O-cyclohexylidene ketal (5), mp $119 \sim 120^{\circ}$ C, $[\alpha]_{D}^{20} + 6^{\circ}$ (*c* 1.0, chloroform), in 80% yield, by selective cyclohexylidenation

(10) $R^{1} = NHCO_2 CH_2 Ph$, $R^{2} = N_3$

with an excess of 1,1-dimethoxycyclohexane (~2 mol) in N,N-dimethylformamide (20 hours at 70°C) in the presence of *p*-toluenesulfonic acid. The ketal was treated with acetic anhydride and pyridine (overnight at room temperature) to give the tetraacetyl derivative (**6**), mp 101~ 102°C, $[\alpha]_D^{21}$ +16.2° (*c* 1.54, chloroform), in 98% yield. Partial hydrolysis of **6** with 50% acetic acid (12 hours at 80°C) provided, after column chromatography on silica gel, 6,3',4',5''-tetra-O-acetyl-1,3,2',6'-tetra-N-benzyloxycarbonylribostamycin (**7**), mp 102~103°C, $[\alpha]_D^{21}$ +18° (*c* 1.39, chloroform), in 35% yield.

Reaction of the protected glycosyl halide (4) with 7 in anhydrous chloroform in the presence of silver carbonate, silver perchlorate and Drierite (20 hours at room temperature) followed by column chromatography on silica gel, afforded a mixture (a syrup) of the condensation products containing 8 as the main product. Hydrolysis of the SCHIFF base moiety of the condensation products at pH 2 in acetone-hydrochloric acid (several minutes at room temperature) gave a syrup. The free amino group at C-2" was benzyloxycarbonylated by treatment with benzyloxycarbonyl chloride in aqueous acetone in the presence of sodium carbonate (20 hours at room temperature). Silica gel chromatography of the reaction mixture afforded 6,3',4',5"-tetra-O-acetyl-1,3,2',6'-tetra-N-benzyloxycarbonyl- 3"-O-(3,4-di-O-acetyl-2-benzyloxycarbonylamino-2deoxy-6-O-tosyl- α -D-glucopyranosyl)ribostamycin (9), a colorless solid, $[\alpha]_{D}^{20} + 42.2^{\circ}$ (c 0.97, chloroform), in 34% overall yield from 7.

Treatment of 9 with sodium azide in N,Ndimethylformamide (15 minutes at 130°C) gave the 6^{'''}-azide (10) as a solid, $[\alpha]_{D}^{20}$ +64.4° (c 0.71,

Table 1.	Antibacterial	spectra	of	synthetic	and
natural	neomycin C				

Test succeives*	MIC (mcg/ml)		
Test organisms*	Synthetic	Natural	
Staphylococcus aureus FDA 209P	3.12	3.12	
Bacillus subtilis NRRL B. 558	0.2	0.39	
Escherichia coli K-12	6.25	6.25	
Escherichia coli K-12 ML 1629	> 100	>100	
Escherichia coli K-12 LA 290 R 55	>100	>100	
Escherichia coli K-12 LA 290 R 56	3.12	6.25	
Escherichia coli K-12 W 677	1.56	1.56	
Escherichia coli K-12 JR 66/W 677	> 100	>100	
Klebsiella pneumoniae PCI 602	3.12	3.12	
Klebsiella pneumoniae type 22 #3038	>100	>100	
Mycobacterium smegmatis ATCC 607**	1.56	1 .5 5	

* Agar dilution streak method (nutrient agar, 37°C, 17 hours).

** 48 hours.

acetone), in 85% yield. De-benzyloxycarbonylation of 10 by catalytic hydrogenolysis with palladium black and hydrogen (4 kg/cm², 14 hours at room temperature) in aqueous dioxane in the presence of acetic acid, followed by hydrolysis with 1 N barium hydroxide (5 hours at 95°C) and purification by use of Sephadex C-25 (NH4⁺) completed the synthesis, giving neomycin C (1), [hydrochloride: $[\alpha]_{\rm D}^{20} + 78^{\circ}$ (c 0.86, water)]¹⁵, identical with that obtained from natural source as judged by the IR spectrum of the hydrochloride (KBr), ¹H-NMR (D₂O) (anomeric protons: $\delta 5.52(1H, d, J_1''', 2''' = 3.5 Hz$, $C_1^{\prime\prime\prime}$ -H), 5.88 (1H, d, $J_1^{\prime\prime},_2^{\prime\prime}$ =1 Hz, $C_1^{\prime\prime}$ -H), and 5.94 (1H, d, $J_{1',2}'=3$ Hz, $C_{1'}$ -H), and ${}^{13}C$ -The tentative assignment of NMR spectra. the ¹³C-NMR spectra (25.16 MHz, D₂O, $\delta =$ internal dioxane difference (67.4 ppm)): 36.4; 42.4; 42.5; 51.1 (2 carbons); 55.9; 56.3; 62.4; 72.2 (2 carbons); 73.98 (4 carbons); 74.5; 75.5; 78.4, 81.7; 82.8; 85.2; 99.7 (C1' and C1'''); 109.45 (C_1'') . Identity with the natural product was further indicated by the antibacterial spectra shown in Table 1.

Acknowledgement

The authors would like to acknowledge stimulating discussions with Prof. HAMAO UMEZAWA, the Institute of Microbial Chemistry. The authors also thank Dr. HIROSHI NAGANAWA for ¹³C NMR measurements.

Sumio Umezawa Yoshio Nishimura

Institute of Bioorganic Chemistry, Ida, Nakahara-ku, Kawasaki-shi, Kanagawa-ken, Japan

(Received November 25, 1976)

References

- WAKSMAN, S. A. & H. A. LECHEVALIER: Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109: 305~307, 1949
- UMEZAWA, H.; S. HAYANO & Y. OGATA: Classification of antibiotic strains of streptomyces and their antibiotic substances on the basis of their antibacterial spectra. Jap. Med. J. 1: 504~511, 1948
- DUTCHER, J. D.; N. HOSANSKY, M. N. DONIN & O. WINTERSTEINER: Neomycin B and C, and some of their degradation products. J. Amer. Chem. Soc. 73: 1384~1385, 1951
- 4) RINEHART, K. L. Jr.; H. HICHENS, A. D. ARGOUDELIS, W. CHILTON, H. CARTER, M. P. GEORGIADIS, C. P. SCHAFFNER &. R. T. SCHILLINGS: Chemistry of the neomycins. X. Neomycins B and C. J. Amer. Chem. Soc. 84: 3218~3220, 1962
- HICHENS, M. & K. L. RINEHART, Jr.: Chemistry of the neomycins. XII. The absolute configuration of deoxystreptamine in the neomycins, paromomycins and kanamycins. J. Amer. Chem. Soc. 85: 1547~1548, 1963
- 6) RINEHART, K. L. Jr.; M. HICHENS, K. STRIEGLER, K. R. ROVER, T. P. CULBERTSON, S. TATSUOKA, S. HORII, T. YAMAGUCHI, H. HITOMI & A.

MIYAKE: Identity of neosamine C, "diaminohexose II", from zygomycin A, and 2,6-diamino-2,6-dideoxy-D-glucose. J. Amer. Chem. Soc. 83: 2964~2965, 1961

- NAKAJIMA, M.; A. HASEGAWA & N. KURIHARA: Synthesis of 2-deoxystreptamine. Tetrahedron Lett. 1964: 967~972, 1964
- UMEZAWA, S.; K. TATSUTA, T. TSUCHIYA & E. KITAZAWA: Synthesis of neamine. J. Antibiotics, Ser. A 20: 53~54, 1967
- JITO, T.; E. AKITA, T. TSURUOKA & T. NIIDA: Synthesis of an aminocyclitol antibiotic, SF-733 (ribostamycin). Antimicr. Agents & Chemoth. 1970: 33~37, 1971
- UMEZAWA, S.; T. MIYAZAWA & T. TSUCHIYA: Synthesis of paromamine. J. Antibiotics 25: 530~534, 1972
- UMEZAWA, S.; H. SANO & T. TSUCHIYA: Synthesis of dihydrostreptobiosamine. Bull. Chem. Soc. Japan 48: 556~559, 1975
- During the course of our work, a similar replacement was very recently reported: OGAWA, S.; H. FUJIMORI & T. SUAMI: Synthesis of 3,4-di-O-acetyl-6-azido-2,6-dideoxy-2-(2',4'-di-nitroanilino)-α-D-glucopyranosyl chloride. Bull. Chem. Soc. Japan 49: 2585~2586, 1976
- MOREL, CH. J.: Über die Darstellung und Eigenschaften von 2,6-Didesoxy-2-amino-D-glucose (6-Desoxy-D-glucosamine). Helv. Chim. Acta 41: 1501~1504, 1958
- 14) IKEDA, D.; T. SUZUKI, T. TSUCHIYA, S. UME-ZAWA & H. UMEZAWA: Studies on aminosugars. XXXVI. Syntheses of 3',4'-dideoxy- and 3',4'5"-trideoxyribostamycin. Bull. Chem. Soc. Japan 46: 3210~3213, 1973
- DUTCHER, J. D. *et al.* reported [α]_D +80° for natural neomycin C hydrochloride in reference
 3). [We found [α]²⁰₂+79° (c 0.86, water).]